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The scattering from the overlap electron density ~*,~(r -- r=)~,jo(r -- r~) between two orbitals on stationary 
atoms at r,~ = 0 and r~ may be expressed as 

oo 

Xi,~jp(k) = J" ~*,~(r-- r,~) Igj~(r -- r/O exp ik.(r--  r,~)dV _-_ Z i tgtm(k) r~m(k), 
l=lml 

where l.ttm(k ) is an orientation-independent term. Y~m(k) are spherical harmonics, where the scattering vector 
k is defined in spherical coordinates (k, Ok,~Ok) and 0~ = 0 corresponds to the direction R = r~ -- r~. m = M~ - 
M~, where M,~ and M~ are the magnetic quantum numbers of the two orbitals defined about the direction R. 
The general case is described and more detailed expressions are given for overlaps involving s, Px, Py, Pz 
orbitals. 

Introduction 

The X-ray structure factor for the reciprocal-lattice 
vector k may be expressed as F(k)  = f p(r) × 
exp(ik, r) dVr, where k = 47r sin 0/2 and p(r) = Po(r) + 
p'(r) + ip"(r), p(r) is the dynamically averaged scatter- 
ing density at r, p0(r) is the dynamically averaged 
electron density at r, and p'(r) and p"(r) are wave- 
length-dependent contributions. 

It is also useful to describe the structure factor as 

F(k)  = Z f,~(k) T,~(k) exp(ik, r,~), 
t~t 

where f,~(k)T,~ exp(ik.r,~) is the contribution to F(k)  
from the ath atom whose most probable nucleus 
position is r,~.f~(k) can be evaluated from a static 
model where all nuclei are at their most probable 
positions. T~(k) may then be regarded as a thermal 
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smearing function which accounts for atomic vibrations. 
From a theoretical viewpoint T,~(k) is not easy to 
calculate and recent efforts by Ruysink & Vos (1974), 
Stevens, Rys & Coppens (1977) and Scheringer (1977) 
show the complexity of the problem and the approxi- 
mations that must be made. 

However, if T~(k) is regarded as being experimentally 
determined, a better model than that of an isolated 
spherical atom or ion is advantageous. The lack of easy 
to use, orientation-dependent scattering factors for 
overlap electron density between atoms has restricted 
the advancement of such procedures. Original efforts 
to evaluate scattering from overlap electron density 
used Slater-type functions (McWeeny, 1952) but 
Gaussian-type functions (McWeeny, 1953) have been 
used for all practical purposes since then. However, 
a simple formulation using Slater-type orbitals is 
possible and this is the subject of this and the following 
paper (Rae & Wood, 1978). 

The wavelength-independent term of f~,(k) may be 
described as 

f0,~(k) = fpo~(r-- r,~) exp ik . ( r - -  r~) dVr, 

where p0~(r - r,~) is the electron density associated with 
the ~tth atom in the static model. We can describe the 
pth electron as being in a molecular orbital 

~,P(r) = ~ a~'~ Via(r-- r~), 
i ,~  

where af,~ is a coefficient and g% is the ith member of 
an orthonormalized set of single-atom wave functions 
at r~. We can thus say 

Po~(r-- r~) = ½ Z [biaj~ V~',~(r-- r~) Ip'j/3(r-- r/3 ) 
q3j 

+ b*aj# glia(r - -  r,~) ~ ,~ '~ (r -  r~)], 

w h e r e  biaj[ 3 = ~,p(af,~)*at}[3 and Z~,p0,~(r -- r~) 
= p0(r). It is useful to assume b~,~j# = fie O~ if i refers 
to an inner shell electron orbital. 6 o has its usual 
meaning (Jo = I if i = j ,  0 otherwise). The bi,~j ~ may be 
theoretically determined from quantum-mechanical 
calculations but they are intrinsically refineable 
parameters of the X-ray diffraction experiment. Ob- 
viously, constrained refinement is an essential feature 
of an experimental approach. 

We must also include the wavelength-dependent 
terms o f f , (k )  ---f0a(k) + f "  (k) + /f"(k), where f ' (k )  
and f " (k )  correspond to the contribution of the ath 
atom to p'(r) and p"(r) respectively. It is usual to 
assume that these terms are the same as for an isolated 
spherical atom. 

Notations used in this paper are explained in the 
Appendix. Throughout this paper we assume only 
integral quantum numbers. 

T h e o r y  

We wish to evaluate integrals of the type 

Xiaj[3(k) = f gt*,~(r- r,~) ~./~ (r--  r~ exp ik. ( r--  ra )dV , 

and hence 

1 k b*~j/3 X~/,~jg(--k)]. (1) L ~ ( k )  = Z ~[bi~j[3Xicxj[3( ) + 
~/3y 

We can describe ~t/.(r - r,~) as R~(rl)Or~, (01)q% (~Pl), 
and ~, j /3(r-  h~ as Rt3(rz)O~(Oz)OM)(pz), where 
r I = r - -  r a a s  polar coordinates (r~,O~,(p~), and 
r 2 = r -- rp has polar coordinates (r2, 02, (Pz). A simpler 
notation is q/i,~(r~) = R~(rOY~oM (rl), and ~'j~(rz) 
= R,(rz)Y~ n (r2). We must expand' ~,(r2)  about r~ 
and to do this ~ve use the expansion ~" 

t _4~2L~ _+ [)_t 1/2 

@~ YL~M~ (r2)= ZL, [(2L~ + 1)I(2Lz + 1)l 
LI+L2=L~ 

x ~ <L1LzMIM21L~M~> 
M1 

MI+M2=M~ 
x 62 YL,M2(r,)(--R)L, Yr,M,(R) (2) 

propounded by Moshinsky (1959); R = r a - r,, 
= r~ - -  r 2. We also use the well-known expression 

! 

e x p  i k . r  I = 41r ~ ~ (--1)miljl(krl) Ylm(k) Yt_m(rl) 
t m = - t  (3 )  

(Stewart, 1969; Antosiewicz, 1968). Using (2) and (3) 
we can then say 

Xi,~ja(k) = ~ il(--1)mYtm(k)[4~z(2L~ + 1)l] v2 
i, m 

Z 
LpMj 

L I+L2=L/3 

(LI L2 M1M21Lt3 M[3) 
(--R) r, YL,M,(R) [ ( 2 L  l + 1)!(2L 2 + 1)!] ½ 

x 4~zfR~(r,)Ra(r2) ~2 

x jl(kr,) Y*avto(rl) Yt_z(r,) Y%M2(rl)dV. 

We have yet to choose the axial directions that 
define our polar coordinates and if we now choose 
01 = 0 to correspond to the direction R then M1 = 0, 
M 2 = M  and m = M  - M , , f o r  anon-zerocontr i -  /3 /3 
bution to x/~j~(k). We will use the notation YgM(r) to 
denote that r is defined relative to R. Now, 

4xY*oMo(r,) Y~o_Ma(rl) rL~na(r,) 
= ( - - l y o  Z (2l + 1)(2L~ + 1)C'(L3M,,,L2M~) 

L, Lj 
x CL~(LO, L3M,~) Yzo(rl) (4) 
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with coefficients C l given by Condon & Shortley (1935). 
If we now change notation to use exclusively 3 j  
coefficients (Rotenberg, Bivins, Metropolis & Wooten, 
1959) we obtain 

oo 

Ziaj~(k) = Z i t t,ttm(k) Ifftm(k), 
l=lml 

where 

m = M I 3 - M  ~, (5) 

/.hm(k) = [4z~(2l + 1)(2L a + 1)(2L~ + 1)11/z(--1)~ 

x [(2L/~ + l)!]l/2(--1)M~ ~ (--R) L, 
L~ 

LI+L2=L~ 

x [(2L~ + 1)!(2L 2 + 1)! M~ --M~ 

x ~ (2L + 1)(2L~ + 1) 
L,L 3 

- M ~ m ]  \.. 0 O/ - -M, ,M,J  

X IlLt.~(k), (6) 

/,,.~(k) = ~ fR=(r t )R~(rz )  j t ( kq)P~(cosO)dV, (7)  

is an axially symmetric integral, the evaluation of which 
is discussed in Rae & Wood (1978). It should be noted 
that for the special case where R = 0 the only non-zero 
contribution to Ptm(k) is when L = L~ = 0, L 2 = L/~ and 
L 3 = L,~. Then 

film(k) = (--1)m[47~(2l + 1)]I/2Ct(LaMc~,L~M~) 

where 

x (jt(k))o,~, (8) 

0o 

(jl(k)>a# = f Ra(r , )R#(r l ) j l ( kr , ) r~dr  ,, (9) 
o 

is a special case of the more general integral IlLz=(k ). 
The result agrees with that of Stewart (1969) obtained 
with only single-centre overlaps. The maximum value 
of L is l + L,, + L=. 

We see that the scattering factors are evaluated by 
redefining k relative to various bonds R = r /3-  r~. We 
thus wish to describe functions YLM(r) defined relative 
to standard reference axes X, Y, Z as combinations of 
functions Y~av(r) defined relative to axes X R, yR, Z R, 
where Z ~ is in the direction R: 

Ygs(r)= ZAMN Y~u(r), r rM(r )=  ZA~t~v Ygs(r). (10) 
M N 

We shall transform the axial system in two stages. Let 
R have polar coordinates (R, 0~, ~pn) relative to the 
standard reference axes. We first rotate by q~ about Z. 
This creates Y~ normal to R. We then rotate by 0~ 
about Y~ to create Z R in the R direction. This is 

equivalent to first rotating by 0 R about Y followed by a 
rotation of ~0 k about Z enabling the evaluation of AMN 
(Brink & Satchler, 1968) as 

AuN=exp(--iMq~R)d~N(OR), (11) 
where 

d~N ( ~  = ~ (-- 1)t 
t 

[(L + N)! (L  -- N)[(L + M ) ! ( L  -- M)!]  1/2 
X 

(L + N -- t)l(L -- M -- t)ltl(t + M - N)! 

0 0 
x cosP~ sin q -~, (12) 

p = 2 L  + N - M - - 2 t ,  q = 2 t + M - N a n d t h a s a n y  
integer value that gives only non-negative numbers for 
the evaluation of factorials; 

dLMN( O) = dL_N_M(O) = dLNM(--O) = (--1) M-N dLNM(O). (13) 

Table 1. Functional forms  Xiaj~(k)for overlaps between 
real functlons 

Note m I = Ma - M~, m 2 = Ma + M,~, M,~ > 0, M~ > 0, 
~arm(k) = la t_ m(k). 

~ia(rl)/Ra(rl) ~j~(rz)/Ra(r2) Xtaj~(k) 

Y~o(rl) Y~o(r2) ~ it/ato(k) Y~o(k) 
1=0 

Y~o(ri) Y~c ( r2 )  ~ it /atM~(k) Y~c(k)  
I = M/3 

YLR~o(r,) YLR~(r9 ~ i'/+M~(k) Y ~ ( k )  
I=Mfl 

YRL~Ma, C(r,) YLR~O(r2) (--1) M~ ~ it/atM,~(k) Y~M~,c(k) 
I=M a 

rL~o.grO r~o(r9 ( -1 )~  ~ i'/a~,o(k) r~o.s(k) 

1 ~ i'/+~,(k) r'/m#k) 

+ ~ I=m 2 

1 ~ it~arm,(k) Y~m, c(k) 

( - l~o ~ i'u,~,(k) Y/',.~ gk) 
i=m2 

1 ~ it~aim, (k) gfml s(k) Y~,,M~ c(r,) Yg~s(rz) ~ t= I m,I 

(--1)M~ X it/atm2(k) Y~mas(k) 
4- - - ~  I=m2 

--1 ~ il/alml (k) gRml s(k) rg:M:'s(r') rg~M~c(r~) - ~  I=lm,I 

(-1p'~ ~ i%m~(k ) Y ~  ~(k) 
+ ~ I=m 2 
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We can define real functions 

1 
YL~,~(r) = ~ [Y~_.(r) + ( - 1 )  M YLM(r)] 

V z  

and 
i 

YLM, s(r) = -~-[YL-M(r) --(--1) M YLM(r)]. 

If we do so then the axial transformation above gives 

YLO(r) = dLO(OR) YLR0(r) + Y V/2 dLo(Og) Y~N.~(r), 
N>0 

YLm, c(r) = 4 2  d~M(OR) COS M ~ r  Y~o(r) 

+ Y [d~(0R)  + (--1) M 4 - M ( 0 ~ ) ]  
N>0 

x cos M~pR Y~N,c(r) 
+ Y. t--dLM(On) + (--1)MdL_M(OR)] 

N>O 

× sin M~o R Y~N,~(r), 

YLM, s(r) = 42d~M(OR) sin M~R Y~o(r) 
+ Y t d ~ ( G )  + (-IY ~d~_~(0R)l 

N>0 

x sin M~o R Y~N,~(r) 

- ~ [--d~(OR) + ( - 1 )  M dN_M(OR)] 
N>O 

x cos M~pR r~N,s(r). (14) 

In particular, when L -- 1 

p~, = ~cos 0~ sin OR cos ~o~ sin 0R sin ~o~ /~y . 

Pz \ - s in  0 R 0 cos 0R P~ 

(15) 

The overlap between real functions can be evaluated 
as combinations of terms of the form contained in (5). 
Table 1 contains expressions for Xu, jo(k) for the overlap 
of real orbitals. 

If we define 7tm as 

[(21+ l) (l-- 'm[)!] 1/2 
?lm: [ "4-~ (l+ Iml)[ ' (16) 

then Y~o (k) = ?1o P~/(cos 0k), and for m > 0 

g~m,c(k) --- 4 2  ~lmer~ (COS Ok) COS m~p/,, 

g~m,s(k)-- 4 2  ~)lmPt~ (COS Ok) sin m~o k 

Y[~_m,c(k) = ( - -1 )  m 4 2 ~ t m e ~  ( cos  Ok) COS mrpk 

and 

Vf-m,s(k) =--(--1) m V/2~lmP~ ' (cos Ok)sin mrPk. 

We should note that m 1 -- Alp -- M~ in Table 1 can 
have any integer value. Functional forms of ytmlhm(k) 
for overlaps between s and p orbitals are given in Table 

Table 2. Functional forms Of ~lm, fllm~(k) and ~lmJllm2(k), where m 1 = M~ - M~,, m 2 -- g13 + M,~ 
The functions are identical if either M,, or M/3 = 0. 

L., M,. L/3 M/3 Value 

0 0 0 0 (2l + 1)Iu0(k ) 
0 0 1 0 3v2[(l + l )I / /+n(k)+ l l u _ n ( k ) - R ( 2 l +  1)i.o(k) l 

1 0 0 0 3v2[(l + 1)lu+1o(k ) + llu_lo(k)] 

0 0 1 1 [--Iu+ n(k) + In_l~(k)] 

1 1 0 0 [Ill+ io(k) -- I._ lo(k)l 

1 0 1 0 3 {  ( l+1) (1+  l(l-- 1) [ ( l +  1) 2 l 2 ] -(2-[+ ~ 2) Iu+2x(k) + Ill-21(k) + + (2l-  1) [(2l + 3) (2l-  1)j Ira(k) 
"t 

-- R[(I + 1) lu+ lo(k) + llu_ lo(k)]} 
/ 

1 0 1 1 ~ -- (2l + 3---~ ~ Iu-2,(k) - [(2l + 3) ( 2 l -  I 

3 f ( l + 2 )  ( l - - l )  [ ( l +  1) l ] 
1 1 1 0 ~72 1 (2-~-~+ 3) Itt+ 2,(k) -- ~ ( 2 l -  1) In- 2,(k) + [~-/" + 3-) (2 l - - - -  1)] Jill(k) 

/ 

- R [Itt+ 1o(k) -- Iu-lo(k)]} 

1 1 1 1 ?'°Ut°(k) = 2 -(21-+~)) tim(k) - Iu+:l(k)] + ~ tim(k) -- Iu-z'(k)l 

l } Yt~an(k) = ~ ~ [Ira(k) - I.÷2,(k)] + ~ [Ira(k) - Iu_2~(k)] 
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Table 3. Functional forms of  Xi~jtj(k) for overlaps 
between real s and p orbitals 

ytm/hm(k) values are given in Table 2 for the appropriate 
L~,M~, L~M~ combination. 

~ol~(r,) ~oj~(r2) Ziaj~(k) 

(1) s s ~ it Y,o l'tto(k) P~l (cos Ok) 
1=0  

s Pz 

Pz s 

Pz P. 

(2) s Px V/2 ~il~llfln(k)e](cosOk)COS(Ok 
/ = 1  

Pz Px 

(3) s p, V/2 ~ityt, gt,(k) P] (cos Ok) sin q~ k 
/ = 1  

P~ Pj, 
oo 

(4) Px s --~/2 Y. itynlh,(k)P] (cos Ok) cos ~0 k 
/ = 1  

Px P~ 

(5) py s --k/2 ~i'y/,lt/l(k)P~(cosOk)sin~pk 
/ = 1  

Py Pz 

(6) p~ py -- ~ i t Yl2fll2(k)P] (cos 0,) sin 2tPk 
1=2 

Py Px 
i/ ~,oU,o(k) ~, (cos 0,) 

(7) Px Px t =o 
co 

-- ~. it yl2lll2(k) P~ (COS Ok) COS 2(0, 
/ = 2  

oo 

(8) p, p, Z i / Y/0 U/o(k) ~ll (COS 0,) 
/ = 0  

+ ~ ityt2fll2(k)P 2 (cos Ok)cos 2(0 k 
/ = 2  

2. Functional forms of Ziaj/3(k) for these orbitals are 
given in Table 3. Functional forms of  Zu, j~(k) are given 
in Table 4 for the special case when both orbitals are 
on the same atom. 

A P P E N D I X  

Associated Legendre polynomial :  

d m 

P7' (cos 0) = sin" 0 d cos 0"  Pt (cos 0). 

Legendre polynomial :  

e I ( c o s  ~) - - -  
1 d t 

21l! d c o s 0 t  (cos 2 0 - -  1) t, pt(1) = 1. 

Table  4. Functional forms of Xi~j,~(k) for overlaps 
between real orbitals on the same atom 

k has direction cosines (t,,t2,t3) relative to the axial system used 
for orbitals. (jr(k)> is defined in (9). The omitted expressions are 
obtained by permutation of the t, t 2 t 3 indices. 

~,,.(0 ~%(0 X,~jo(k) 
s s <A(k)> 
s Pz iv/3t3<j,(k)> 
p~ p~ <jo(k)> + (I - 3t~)<j2(k) > 
Px Py --3t, t2(J2(k)> 

Spherical  harmonics :  

[ ( 2 l +  1 ) ( l - - m ) , ]  ,/2 
Form>_O, Yz,,(O,o)=(--1)'[- -4-~ (l + m)!] 

x p~n (cos 0) exp im~o 

=[_(2! +_ I) (_/s-.m)l] ,/2 
Yl-m(O'~o) [ 4n  ( l + m ) ! J  PT'(cosO)exp--imq~. 

Product  of  spherical  harmonics :  

Yl,m,(O, (O) Y,2"2(0, tp) = Z at Ylm,+m2(O, tp), 
! 

where 

(211+1) 1/2 
at = \ 4zt cl'(lml + m2,12 m2) 

=(--1)-m'-m~ [-(2l +1)(2l' +1)(212 +1)] 4n 

m , - m  2 m, m2] 9 0 
3-j  symbols  and Wigner  coefficients: 

m, m2 = (212 + 1) 1/2 (lllmmlll2-m2>" 

Spherical  Bessel function: 

cos z sin z 
j_,(z) = - - ,  jo(Z)-- 

Z Z 

a~+,(z) _ (2n + 1_____ ) ~ ( z )  - - ~ -  l(Z). 
Z 
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A new method is given for the calculation of integrals 

1 taia jt(krO PL (COS 01) d V Iux2 (k) =~n  f R,,(r~)R~(r2)-~¢ 

which are needed to evaluate orientation-dependent scattering factors for the overlap electron density between 
orbitals on stationary atoms at r,~ and r~, where r~ = r - r~, r 2 = r - r~ and R,~(rl) and R~(r2) are Slater-type 
radial functions. The integration may be reduced to the sum of an algebraic term and a one-dimensional 
numeric integration between 0 and R, where R = r~ - r,~. 

Introduction 

Let ~/,~(rl) = R,~(rl)Y ~ . (r 0 and ~jo(r2) = R~(rzi x 
Y ~ ( r 2 )  be orbitals on~sfationary atoms at r,~ and r~ 
respectively, where r 1 = r -  r,~ and r 2 = r -  r/3. The 
X-ray scattering from the overlap electron density 
~*,,(rl) ~,j~(r 2) may then be expressed (Rae, 1978) as 

oo 

X/~j~(k) = ~ i tgtm(k) Y~m(k), m = Mr3-  M,r 
l:lrnl (1) 

The scattering vector k has polar coordinates (k, 0 k, ~Pk) 
defined relative to a local axial system, where O k = 0 
corresponds to the direction R = r -- r Likewise, r~ /3 a" 
has polar coordinates (r1,01,~01) and r 2 has polar 
coordinates (r202,~02) relative to the same axes. 

R R YLd4o(rl), Y,~o(r2), Y~m(k) are spherical harmonics 
with the appropriate polar coordinates defined above. 
The evaluation of #tm(k) requires the calculation of 
axially symmetric integrals 

1 
ItLL2(k) -~-~ f R~(rl) '2"d' " = R~(r2)--~-, Jt(krl) Pt (COS 01) dV, 

(2) 

where k = 4n sin 0/2, 0 being the Bragg angle. The 
evaluation of these integrals for Slater-type orbitals is 
the subject of this paper. 

Theory 

We expand R~(r2)/~ about r,, as 
co 

R~(r2)/~= )_j, (2L' + 1)PL,(CosOI)UL,(r<,r>), (3) 
L'=O 

where Ut,(r<,r>) is a function of r< and r> and P~,(cos 
00 is a Legendre polynomial of order L' .  r< is the 
smaller and r> the greater of r~ and R. (3) enables us to 
say 

oo 
Ii~l.2(k) = f R~(rl)d%(krl) U~.(r<,r>)r~dr, (4) 

o 

from the orthogonality of Legendre polynomials, i.e. 

2L+,;y 
4~ PL (cos 00 P,, (cos 00 d cos 0, d~, = &,.L,, 

- I  0 

where &H., = 1 i fL  = L' ,  0 i fL  4= L' .  


